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The Condition of Orthogonal Polynomials 

By Walter Gautschi 

Abstract. An estimate is given for the condition number of the coordinate map associat- 
ing to each polynomial its coefficients with respect to a system of orthogonal polynomials. 

Let w(x) > 0 be a weight function on the finite interval [a, b], and {pk(x)} k=O 

the associated orthogonal polynomials. We consider the linear parametrization 
map Mn: Rn -> P1- which associates to each (real) vector UT = [u0, ui, , u l-] E 

R' the (real) polynomial p(x) = Jk- 
1 

Ukpk(X) C Pn-1. The object of this note is to 
estimate the condition 

condc Mn = JiMnjlo. jiMn11o. 

of the map Mn, the infinity norms in Rn being defined by ||ulK., = maxo5k<n-1 lukkl 
and in Pn-l by I IplI 1 = maxa,,,.,b Jp(x) . Letting 

,b rb 

/o = f w(x) dx, hk = f p'(x)w(x) dx, k = 0, 1, 2, 

we show in fact that 
/ 1/2 n-1 

()cond < Mn _ max AO max E IPk(X)I. 
O'k_n-1 hk a<x<b k=O 

For Chebyshev polynomials Pk(X) = Tk(x) on [-1, 1], e.g., this gives 

condc, Mn < 21/2n (Pk = Tk), 

while for Legendre polynomials Pk(X) = Pk(x) on [-1, 1] one gets 

condOc Mn ? n(2n - 1)1/2 (Pk = Pk). 

In order to prove (1), we first observe that, for any u C Rn, 
n-1 n-1 

I|MnUi|| = Ukpk(X) < I Iu I o. max Z Ipk(X)I , 
k=O a< xb k=O 

so that 

n-1 

(2) $ Mnll < max E IPk(X)I. 
a<x<b k=O 

On the other hand, if Mn lp = u, then, by orthogonality, 
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Uk = -1 P(X)Pk(X)W(x) dx, k = 0, 1, , n - 1. 
hk a 

Therefore, using the Schwarz inequality, 

UkI < 
i 

f IP(X) 
W 

(W(X)) / 2. Pk(X) I(W(X))1/2 dx 

hk 
(f 

2 w(x) 
dx 

Pk w(x) dx) 

I - (iI fb W(X) dx1 *hk) = IPI|GIo/hk)2. 

It follows that, for all p & P, 1, 

IM.I'p I 1- IpIPA max (jio/hk)"2, 
O<k<n-1 

so that 

(3) JIMn '11 < max (,q/hk)1/2. 
O_k_n-1 

Combining (2) and (3) gives the desired result (1). 
In terms of the orthonormal polynomials 7rk(X) = h1'2pk(x), we may write (1) 

in the form 

n-1 

(1') condc Mn-< max (IO/hk)"/2 max E hk'2 I1rk(X)I. 
O<k_n-I a?x?b k=O 

If we let h = minO<k?n-l hk, we see that the bound in (1') is larger than or equal to 
n-1 n-1 

(g/h)l'2 max E h1'2 lrk(x)I = g/I max E lrk(x)I, 
azxgb k=O a_xzb k=O 

so that, among all possible normalizations, the one with ho = h = hn1 gives 
the best bound in (1). 
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