The Condition of Orthogonal Polynomials

By Walter Gautschi

Abstract

An estimate is given for the condition number of the coordinate map associating to each polynomial its coefficients with respect to a system of orthogonal polynomials.

Let $w(x) \geqq 0$ be a weight function on the finite interval $[a, b]$, and $\left\{p_{k}(x)\right\}_{k=0}^{\infty}$ the associated orthogonal polynomials. We consider the linear parametrization $\operatorname{map} M_{n}: \mathbf{R}^{n} \rightarrow \mathbf{P}_{n-1}$ which associates to each (real) vector $u^{T}=\left[u_{0}, u_{1}, \cdots, u_{n-1}\right] \in$ \mathbf{R}^{n} the (real) polynomial $p(x)=\sum_{k=0}^{n-1} u_{k} p_{k}(x) \in \mathbf{P}_{n-1}$. The object of this note is to estimate the condition

$$
\operatorname{cond}_{\infty} M_{n}=\left\|M_{n}\right\|_{\infty}\left\|M_{n}^{-1}\right\|_{\infty}
$$

of the map M_{n}, the infinity norms in R^{n} being defined by $\|u\|_{\infty}=\max _{0 \leq k \leq n-1}\left|u_{k}\right|$, and in P_{n-1} by $\|p\|_{\infty}=\max _{a \leqq x \leqq b}|p(x)|$. Letting

$$
\mu_{0}=\int_{a}^{b} w(x) d x, \quad h_{k}=\int_{a}^{b} p_{k}^{2}(x) w(x) d x, \quad k=0,1,2, \cdots,
$$

we show in fact that

$$
\begin{equation*}
\operatorname{cond}_{\infty} M_{n} \leqq \max _{0 \leqq k \leqq n-1}\left(\frac{\mu_{0}}{h_{k}}\right)^{1 / 2} \max _{a \leqq x \leqq b} \sum_{k=0}^{n-1}\left|p_{k}(x)\right| . \tag{1}
\end{equation*}
$$

For Chebyshev polynomials $p_{k}(x)=T_{k}(x)$ on [$\left.-1,1\right]$, e.g., this gives

$$
\operatorname{cond}_{\infty} M_{n} \leqq 2^{1 / 2} n \quad\left(p_{k}=T_{k}\right),
$$

while for Legendre polynomials $p_{k}(x)=P_{k}(x)$ on $[-1,1]$ one gets

$$
\operatorname{cond}_{\infty} M_{n} \leqq n(2 n-1)^{1 / 2} \quad\left(p_{k}=P_{k}\right) .
$$

In order to prove (1), we first observe that, for any $u \in \mathbf{R}^{n}$,

$$
\left\|M_{n} u\right\|_{\infty}=\left\|\sum_{k=0}^{n-1} u_{k} p_{k}(x)\right\|_{\infty} \leqq\|u\|_{\infty} \max _{a \leq x \leq b} \sum_{k=0}^{n-1}\left|p_{k}(x)\right|,
$$

so that

$$
\begin{equation*}
\left\|M_{n}\right\|_{\infty} \leqq \max _{a \leqq x \leqq b} \sum_{k=0}^{n-1}\left|p_{k}(x)\right| . \tag{2}
\end{equation*}
$$

On the other hand, if $M_{n}^{-1} p=u$, then, by orthogonality,
Received December 27, 1971.
AMS 1970 subject classifications. Primary 33A65; Secondary 65G05.
Key words and phrases. Orthogonal polynomials, parametrization, conditioning, Chebyshev polynomials, Legendre polynomials.

$$
u_{k}=\frac{1}{h_{k}} \int_{a}^{b} p(x) p_{k}(x) w(x) d x, \quad k=0,1, \cdots, n-1 .
$$

Therefore, using the Schwarz inequality,

$$
\begin{aligned}
\left|u_{k}\right| & \leqq \frac{1}{h_{k}} \int_{a}^{b}|p(x)|(w(x))^{1 / 2} \cdot\left|p_{k}(x)\right|(w(x))^{1 / 2} d x \\
& \leqq \frac{1}{h_{k}}\left(\int_{a}^{b} p^{2}(x) w(x) d x \int_{a}^{b} p_{k}^{2}(x) w(x) d x\right)^{1 / 2} \\
& \leqq \frac{1}{h_{k}}\left(\|p\|_{\infty}^{2} \int_{a}^{b} w(x) d x \cdot h_{k}\right)^{1 / 2}=\|p\|_{\infty}\left(\mu_{0} / h_{k}\right)^{1 / 2} .
\end{aligned}
$$

It follows that, for all $p \in \mathbf{P}_{n-1}$,

$$
\left\|M_{n}^{-1} p\right\|_{\infty} \leqq\|p\|_{\infty} \max _{0 \leqq k \leq n-1}\left(\mu_{0} / h_{k}\right)^{1 / 2}
$$

so that

$$
\begin{equation*}
\left\|M_{n}^{-1}\right\|_{\infty} \leqq \max _{0 \leqq k \leq n-1}\left(\mu_{0} / h_{k}\right)^{1 / 2} . \tag{3}
\end{equation*}
$$

Combining (2) and (3) gives the desired result (1).
In terms of the orthonormal polynomials $\pi_{k}(x)=h_{k}^{-1 / 2} p_{k}(x)$, we may write (1) in the form

$$
\operatorname{cond}_{\infty} M_{n} \leqq \max _{0 \leqq k \leq n-1}\left(\mu_{0} / h_{k}\right)^{1 / 2} \max _{a \leq x \leq b} \sum_{k=0}^{n-1} h_{k}^{1 / 2}\left|\pi_{k}(x)\right| .
$$

If we let $h=\min _{0 \leqq k \leqq n-1} h_{k}$, we see that the bound in (1^{\prime}) is larger than or equal to

$$
\left(\mu_{0} / h\right)^{1 / 2} \max _{a \leqq x \leq b} \sum_{k=0}^{n-1} h^{1 / 2}\left|\pi_{k}(x)\right|=\mu_{0}^{1 / 2} \max _{a \leqq x \leq b} \sum_{k=0}^{n-1}\left|\pi_{k}(x)\right|,
$$

so that, among all possible normalizations, the one with $h_{0}=h_{1}=\cdots=h_{n-1}$ gives the best bound in (1).

Acknowledgment. The author is indebted to the referee for the observation made in the last sentence of this note.

